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Abstract

Motivation: The identification of binding hotspots in protein–RNA interactions is crucial for understanding their po-
tential recognition mechanisms and drug design. The experimental methods have many limitations, since they are
usually time-consuming and labor-intensive. Thus, developing an effective and efficient theoretical method is ur-
gently needed.

Results: Here, we present SREPRHot, a method to predict hotspots, defined as the residues whose mutation to ala-
nine generate a binding free energy change �2.0 kcal/mol, while others use a cutoff of 1.0 kcal/mol to obtain bal-
anced datasets. To deal with the dataset imbalance, Synthetic Minority Over-sampling Technique (SMOTE) is uti-
lized to generate minority samples to achieve a dataset balance. Additionally, besides conventional features, we use
two types of new features, residue interface propensity previously developed by us, and topological features
obtained using node-weighted networks, and propose an effective Random Grouping feature selection strategy
combined with a two-step method to determine an optimal feature set. Finally, a stacking ensemble classifier is
adopted to build our model. The results show SREPRHot achieves a good performance with SEN, MCC and AUC of
0.900, 0.557 and 0.829 on the independent testing dataset. The comparison study indicates SREPRHot shows a
promising performance.

Availability and implementation: The source code is available at https://github.com/ChunhuaLiLab/SREPRHot.

Contact: chunhuali@bjut.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein–RNA interactions play critical roles in a variety of biological
processes by regulating different steps of the gene expression pro-
cess, from transcription to translation (Keene, 2007). The abnorm-
ities in the interactions may lead to multiple diseases such as cancer
and neurological disorders (Lukong et al., 2008). It is known that a
small fraction of interfacial residues, termed as binding hotspots,
contribute to the majority of binding free energy for target RNA
(Clackson and Wells, 1995). Thus, the reliable hotspot identification
in protein–RNA interactions is crucial for understanding the poten-
tial recognition mechanism and for designing drugs. Experimentally,
a hotspot residue can be found by evaluating the binding free energy

change (DDG) upon mutating it to alanine (Krüger et al., 2018).
However, these methods are costly and time-consuming, and thus
developing an effective and efficient computational method is ur-
gently needed to allow for the hotspot identification on a large scale.

Until now, few methods have been developed for predicting hot-
spots in protein–RNA interactions, which lags behind protein–pro-
tein hotspot prediction, because of the limited available
experimental data. In 2016, Barik et al. proposed HotSPRing, a
Random Forest (RF) model which uses structural and physicochemi-
cal features of interfacial residues to predict the ranges of DDG for
RNA-binding residue mutations. The method gives a Matthews cor-
relation coefficient (MCC) of 0.258 where a cutoff threshold of
DDG¼1.0 kcal/mol is used. In 2018, Pan et al. developed PrabHot,
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a better performance tool with MCC being 0.389, which utilizes
Boruta (Kursa et al., 2010) feature selection algorithm and a voting
machine composed of three different classifiers. Later in 2019,
XGBPRH method was introduced by Deng et al. (2019), which
adopted McTWO algorithm (Ge et al., 2016) to select out six opti-
mal features to train eXtreme Gradient Boosting (XGBoost) classi-
fier (Chen and Guestrin, 2016), and achieves an MCC improvement
to 0.661. Despite the advances, the computational prediction of
RNA-binding hotspots is still in its infancy.

Besides classifiers, the features used for hotspot prediction are
also important. The existing methods mainly use some sequence-
and structure-based features. In fact, there are still other features we
need to explore to improve the protein–RNA-binding hotspot pre-
diction. In a previous work, we extracted a residue-nucleotide pair-
wise propensity potential from protein–RNA interactions, which
shows a good performance in protein–RNA interaction prediction
(Wang et al., 2021), discrimination of near-native complex struc-
tures (Li et al., 2012; Lu et al., 2020; Zhang et al., 2017) and identi-
fication of interfacial residues (Liu et al., 2021a). The hotspots are a
type of special sites at the interface, and therefore we think the pro-
pensity potential could be a good feature for identifying hotspots. In
addition, as for the residue topological features from amino acid net-
work (AAN) models, they have been successfully used to explore the
functional sites, including catalytic, allosteric and ligand binding res-
idues (Yan et al., 2014). Usually, the topological features are
obtained from the traditional unweighted AAN model that ignores
the residue node heterogeneity which is critical to the discrimination
of the structurally or functionally important residues. In view of
this, many weighted AAN models have been developed, among
which the node-weighted networks developed by Yan et al. (2018)
are quite able to characterize the node heterogeneity and have been
widely applied in the functional residue prediction. Thus, we think
that the use of residue topological features from the node-weighted
networks will probably have a positive role for hotspot prediction.

Additionally, for a relatively small sample size, selecting a subset
of significant features is important for building an effective predict-
or. The commonly used feature selection methods include minimum
Redundancy Maximum Relevance (mRMR; Peng et al., 2005), RF
(Breiman, 2001) and Boruta whose performances are not very ideal
for a small sample size. Our strategy to solve this problem is that
first the samples are divided into several subsets and the feature se-
lection is performed on all the subsets, respectively, and then the
commonly selected features are retained as the optimal feature set.
Our results demonstrate the effectiveness of the strategy and we call
it Random Grouping feature selection strategy in the following.

Another point which needs to be mentioned is the class imbal-
ance problem. To overcome it, most of the existing methods choose
DDG¼1.0 kcal/mol as the threshold to define the hotspots, and thus
the ratio between the numbers of positive and negative samples is
close to 1:1. However, Krüger et al. (2018) speculate that there are
in fact only about 10% hotspots (DDG�2.0 kcal/mol) in protein–
RNA interfaces. Such a high class imbalance will seriously affect the
performance of classifier models, inducing an overfitting to the ma-
jority class samples (Chawla et al., 2002). Usually, the over-
sampling and under-sampling techniques are used to preprocess the
imbalanced data, among which the Synthetic Minority Over-
sampling Technique (SMOTE) is often used in the field of commer-
cial data mining (Chawla et al., 2002). Different from the naive ran-
dom over-sampling algorithms that generate minority class samples
through a simple random replication, the SMOTE method generates
the synthetic samples via some operations in the feature space,
which avoids the overfitting problem to some extent (Chawla et al.,
2002). Several recent studies have successfully utilized SMOTE to
effectively improve the predictions of protein–protein interaction
sites (Wang et al., 2019) and drug–target interactions (Redkar et al.,
2020).

In this work, we propose an effective method called SREPRHot
(a SMOTE and Random Grouping strategies-based Ensemble learn-
ing model for Protein–RNA-binding Hotspot prediction) to predict
binding hotspots in protein–RNA interactions, where a threshold of
DDG¼2.0 kcal/mol is adopted to define a hotspot. The SMOTE

algorithm is introduced to balance the data classes. A subset of opti-
mal features is selected out by our proposed Random Grouping fea-
ture selection strategy combined with a two-step method from eight

types of candidate features extracted from protein sequences and
structures, including the residue-nucleotide pairwise propensity po-

tential and residue topological features from node-weighted AAN
models. These features are then utilized to train a stacking ensemble
classifier (SCE) to build the hotspot predictor. The framework of

SREPRHot method is shown in Figure 1.

2 Materials and methods

2.1 Training and testing datasets
We collected the residue mutation thermodynamics data from two

sources: the dbAMEPNI database (database of Alanine Mutagenic
Effects for Protein-Nucleic Acids Interaction, http://zhulab.ahu.edu.

cn/dbAMEPNI; Liu et al., 2018) and the data gathered in developing
the hotspot prediction methods HotSPRing, PrabHot and
XGBPRH, which were published in 2016, 2018 and 2019, respect-

ively. Thus, we collected 334 residue mutations from 81 complexes
in total. To remove the redundancy, the proteins with sequence simi-

larity >40% were excluded by using CD-HIT (Li and Godzik,
2006). After that, only the interfacial residues were retained whose
absolute solvent accessibility changes DASA [calculated by Naccess

(Hubbard and Thornton, 1993)] after binding with target RNAs are
>1.0 Å2 (Zhang et al., 2020). Finally, we obtained 229 residue
mutations across 58 complexes. Among them, the 15 complexes

used as the testing dataset by PrabHot and XGBPRH method are
considered as our independent testing dataset for easy comparison

with them, and the remaining ones are used as the training dataset
(Supplementary Table S1).

Different from the existing methods where the interface residues
with DDG�1.0 kcal/mol are considered as hotspots, our method
adopts the criterion of DDG�2.0 kcal/mol. Thus, there are 35 posi-

tive and 136 negative samples in the training dataset, and the corre-
sponding numbers are 10 and 48 in the independent testing dataset.

2.2 Feature extraction
A comprehensive set of 120 features from eight types was extracted
(Supplementary Table S2). More details on the features are

described below.
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Fig. 1. Framework of SREPRHot for identifying binding hotspots in protein–RNA

interactions
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2.2.1 Physicochemical characteristics of amino acids

Ten physicochemical properties of amino acids (Supplementary
Table S3) are taken from the AAIndex database (Kawashima et al.,
2008) and the literatures (Jones and Thornton, 1997a; Li et al.,
2008; Ramachandran and Antoniou, 2008; Voet and Voet, 2004),
including number of atoms, number of electrostatic charges, number
of potential hydrogen bonds, hydrophobicity, hydrophilicity, pro-
pensity, isoelectric point, mass, expected number of contacts within
a 14 Å sphere and electron–ion interaction potential, which are high-
ly correlated with the interface properties of a protein.

2.2.2 Secondary structural features

SPIDER3 (Heffernan et al., 2015) is applied to compute protein sec-
ondary structural features including the main-chain torsional angles
(u and w), the main-chain angles between Ca atoms (h and s) and
the probabilities of three kinds of secondary structures: alpha-helix,
beta-strand and random coil.

2.2.3 Depth index and protrusion index

The geometric shape complementarity at the binding interface is im-
portant for protein–RNA interactions. Depth index (DPX) and pro-
trusion index (CX) were proposed to characterize the embedded and
protruding conditions of an atom surrounded by other non-
hydrogen atoms, respectively (Pintar et al., 2002, 2003). We use
PSAIA (Mihel et al., 2008) to calculate the indexes for a protein in
bound and unbound states including the means of DPXs and CXs of
all atoms of a residue and their standard deviations, and the means
of DPXs and CXs of side-chain atoms and their standard deviations.
In addition, the differences in the means and standard deviations of
all atoms and side-chain atoms of a residue between bound and un-
bound states are also computed.

2.2.4 Solvent accessible surface area

The solvent accessible surface areas (SASAs) of a residue in the com-
plex and monomer are calculated by Naccess for a total of 10 attrib-
utes: absolute and relative values for all atoms, total side-chain
atoms, main-chain atoms, non-polar atoms and all polar atoms in a
residue. Moreover, their changes and the corresponding square roots
between the two states are also calculated.

2.2.5 Position-specific scoring matrix

The position-specific scoring matrix (PSSM) gives the probability of
occurrence of each kind of amino acid residue at each position,
which reflects the evolutionary information of a residue position
(Liu et al., 2021b). For a protein with N residues, the size of its
PSSM matrix is N�20 and each row encapsulates the evolutionary
information for a residue position. The PSSM of a protein is calcu-
lated by PSI-BLAST (Altschul et al., 1997) searching against NCBI
non-redundant protein sequence database.

2.2.6 Solvent exposure features

Half-sphere exposure (HSE; Hamelryck, 2005), a kind of solvent ex-
posure measures that describes the contacts between residues and
solvent molecules, has been proved to be important for protein
structure and function predictions (Sharma et al., 2019). HSE is a
two-dimensional measure, where a residue’s spatial sphere is divided
into two half parts: HSE-up (the upper sphere in the direction of the
side chain of a residue) and HSE-down (the lower sphere in the op-
posite direction). HSEpred (Song et al., 2008) is employed to com-
pute the solvent exposure features HSE-up and HSE-down, and in
addition the residue contact number (CN) is also calculated.

2.2.7 Residue interface propensity

Residue interface propensity (IP) is from our previously obtained
20�4 residue-nucleotide pairwise propensity potential that was
extracted from 251 protein–RNA interactions (Li et al., 2012), and
was later updated (used here, Supplementary Table S4) based on a
larger dataset including 694 interactions (Lu et al., 2020). The

propensity of one residue-nucleotide pair is obtained from its
observed probability divided by its expected probability of occurring
on the interfaces. Here, the IP of a residue type is represented as an
average of its paired propensities over the four kinds of nucleotides.

2.2.8 Residue topological features from AAN

Compared with the traditional unweighted AAN, the node-
weighted AAN, which considers residue heterogeneity, can better re-
flect the residue topological properties (Yan et al., 2018). Here, be-
sides the unweighted AAN, the four node-weighted AANs based on
residue mass, hydrophobicity, polarity and solvent accessibility, re-
spectively, are constructed and the corresponding residue topologic-
al features including degree, betweenness centrality and closeness
centrality are calculated by using the R package ‘NACEN’ (Yan
et al., 2018).

2.3 SMOTE dataset balancing algorithm
For the data class imbalance problem, the SMOTE is utilized to gen-
erate the minority positive samples to achieve the class balance. First
the k-nearest neighbors (kNNs) y (here the default k¼5 adopted) of
a sample x in the minority class are found, and then new samples
are built by the random interpolation operation according to the fol-
lowing equation:

xnew ¼ xþ y� xð Þ � d; (1)

where d is a random number within the interval of (0, 1).

2.4 Feature selection
Here, we propose a new Random Grouping strategy combined with
a two-step algorithm to select the optimal feature subset. First, the
training dataset is randomly divided into 10 equal groups and the
feature selection is performed 10 rounds with 9 groups of the 10
used for each round. Then, the selected features in each round are
recorded and only the features selected not less than 2 times in the
10 rounds are finally retained as the optimal feature set.

For each round, a two-step method is adopted. First mRMR and
Decision Tree (DT) methods (Quinlan, 1979) are combined to sort
the importance of the candidate features. Then, Sequential Forward
Selection (SFS; Kohavi and John, 1997) combined with Support
Vector Machine (SVM) with default parameters is used to determine
the optimal feature combination from the top 60 in the importance
list through maximizing the Ec score (Pan et al., 2020) via 10-fold
cross-validation repeated 5 times. The Ec score is calculated as

Ec ¼
1

R

XR

j¼1

1

n

Xn

i¼1

ACCij þ SENij þ SPEij þMCCij þ AUCij

� �" #
; (2)

where n and R (10 and 5 adopted) are the number of cross-
validation folds and the times of the n-fold cross-validation, respect-
ively, and ACC, SEN, SPE, MCC and AUC are the values of accur-
acy, sensitivity, specificity, Matthew’s correlation coefficient and
AUC score, respectively. Supplementary Figure S1 shows the flow-
chart of our feature selection process.

2.5 Stacking ensemble classifier
Stacking (Wolpert, 1992), an ensemble learning strategy that com-
bines multiple base classifiers via a meta-classifier, has been proved
to perform better than the single classifiers by many researches.
Here, we apply three boost classifiers Gradient Tree Boosting (GTB;
Friedman, 2002), RF (Breiman, 2001) and SVM (Cherkassky,
1997), as base classifiers, and Logistic Regression (LR; Wright,
1995) as the meta-classifier.

2.6 Performance evaluation
SREPRHot is tuned on the training dataset by a 10-fold cross-
validation, and tested on the independent testing set. The evaluation
indicators including accuracy (ACC), sensitivity (SEN), specificity
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(SPE), precision (PRE), F1 score (F1) and MCC are used, which are

defined as follows:

SEN ¼ TP

TPþ FN
; (3)

SPE ¼ TN

TNþ FP
; (4)

PRE ¼ TP

TPþ FP
; (5)

F1 ¼
2� SEN� PRE

SENþ PRE
; (6)

ACC ¼ TPþ TN

TPþ TNþ FPþ FN
; (7)

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þ

p ; (8)

where the true positive (TP), false positive (FP), true negative (TN)
and false negative (FN) are obtained by comparing the predicted
label for each residue with the actual one. We also use the area

under a Receiver Operating Characteristic (ROC) curve, named
AUC, to measure the performance of the model.

3 Results

3.1 Advantage of the SMOTE algorithm
The use of the criterion of hotspots DDG�2.0 kcal/mol leads to a
high imbalance between the positive and negative samples, which
makes the feature selection and model construction largely domi-
nated by negative samples, therefore disadvantageous for model
construction. The SMOTE algorithm was adopted to generate the
minority (positive) class samples in the training set to balance the
data. In order to explore whether balancing the positive and nega-

tive samples to the ratio 1:1 can improve the model performance,

we compared the results obtained by the models trained on the bal-
anced data by SMOTE and by Random Repeat Oversampling tech-
nique (simple copying operations), and on the initial imbalanced
ones, as shown in Table 1.

From Table 1, compared with the result from the model trained
on the imbalanced data, the corresponding results on the balanced
ones have an evident improvement. Furthermore, the model trained
on the dataset processed by SMOTE achieves a better prediction
than that processed by Random Repeat Oversampling, with SEN,
MCC and AUC improved by 26.4%, 12.8% and 8.7%, respectively.
We argue that the reason for the improvement is that the samples
generated by Random Repeat Oversampling technique are only the
copies of the original positive ones, not increasing any new informa-
tion, which may cause a certain degree of overfitting (Chawla et al.,
2002).

3.2 Evaluation of different feature selection methods
Our proposed new algorithm, Random Grouping strategy combined
with a two-step method (Section 2), was used to select the optimal
feature set. In order to explore the advantages of Random Grouping
strategy and the new algorithm, we compared the performances of
the four classical methods mRMR, RF, Boruta and SFS (SVM-
based) with and without the strategy, and our Random Grouping
strategy combined with the two-step method. The results are shown
in Table 2.

As shown in Table 2, among the feature selection methods
without the Random Grouping strategy, the two-step method
reaches the best performance (SEN¼0.768, F1¼0.591,
MCC¼0.525 and AUC¼0.848). Moreover, with the strategy
considered, each method’s performance has an improvement to
some extent, especially in SEN, F1 and MCC scores. Thus, the
Random Grouping strategy combined with a two-step algorithm,
which we propose to select the optimal features for our model, per-
forms clearly better than the other methods. We speculate the pos-
sible reason is that the two-step method considers the
complementarity between features and reduces the overfitting (Ge
et al., 2016; Qiao et al., 2018), and the Random Grouping strategy
reduces the influence of the outlier samples on the feature selection
to some extent.

Table 1. Prediction results from models trained on balanced training datasets by SMOTE and Random Repeat Oversampling techniques,

respectively, and on the initial imbalanced one

Data ACC SEN SPE PRE F1 MCC AUC

Imbalanced 0.795 6 0.092 0.492 6 0.254 0.874 6 0.076 0.513 6 0.264 0.490 6 0.241 0.371 6 0.294 0.691 6 0.137

Balanced by Random

Repeat Oversampling

0.825 6 0.078 0.633 6 0.176 0.874 6 0.094 0.642 6 0.215 0.601 6 0.123 0.515 6 0.167 0.780 6 0.096

Balanced by SMOTE 0.833 6 0.091 0.800 6 0.227 0.847 6 0.113 0.602 6 0.231 0.646 6 0.171 0.581 6 0.208 0.848 6 0.145

Table 2. Prediction results of the models using classical feature selection methods and Random Grouping strategy combined with a

two-step method

Method ACC SEN SPE PRE F1 MCC AUC

mRMR (�) 0.840 6 0.061 0.625 6 0.314 0.861 6 0.102 0.527 6 0.231 0.554 6 0.205 0.472 6 0.201 0.807 6 0.105

mRMR (þ) 0.823 6 0.089 0.673 6 0.237 0.853 6 0.131 0.610 6 0.225 0.618 6 0.131 0.523 6 0.175 0.805 6 0.136

RF (�) 0.836 6 0.100 0.580 6 0.365 0.870 6 0.110 0.522 6 0.342 0.534 6 0.318 0.446 6 0.340 0.798 6 0.191

RF (þ) 0.857 6 0.098 0.615 6 0.242 0.885 6 0.092 0.584 6 0.188 0.580 6 0.180 0.507 6 0.207 0.830 6 0.126

Boruta (�) 0.845 6 0.067 0.683 6 0.358 0.883 6 0.084 0.534 6 0.288 0.586 6 0.281 0.503 6 0.296 0.812 6 0.135

Boruta (þ) 0.849 6 0.099 0.693 6 0.248 0.889 6 0.107 0.592 6 0.237 0.620 6 0.188 0.541 6 0.249 0.822 6 0.132

SFS (�) 0.810 6 0.086 0.665 6 0.242 0.837 6 0.092 0.557 6 0.188 0.576 6 0.180 0.482 6 0.207 0.809 6 0.128

SFS (þ) 0.821 6 0.081 0.628 6 0.299 0.868 6 0.073 0.621 6 0.198 0.588 6 0.218 0.501 6 0.265 0.837 6 0.204

Two-step (�) 0.831 6 0.117 0.768 6 0.292 0.843 6 0.137 0.522 6 0.298 0.591 6 0.279 0.525 6 0.292 0.848 6 0.132

Two-step (þ) 0.833 6 0.091 0.800 6 0.227 0.847 6 0.113 0.602 6 0.231 0.646 6 0.171 0.581 6 0.208 0.848 6 0.145

Note: (þ) and (�): with and without Random Grouping strategy. mRMR, minimum redundancy maximum relevance; RF, random forest; SFS, sequential for-

ward selection.
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After the dimensional reduction by the Random Grouping
strategy combined with the two-step algorithm, we finally
obtained the optimal set of 18 features which are shown in
Supplementary Table S5. Among the 18 features, nine features are
sequence-based of four types (physicochemical characteristics of
amino acids, PSSM, solvent exposure features and IP) and the
other nine are structure-based of the other three types (DPX and
CX, SASA and topological features). It should be pointed out that
the residue IP proposed by us and the two topological features
from the node-weighted AAN are selected as the optimal ones,
which to our knowledge are used for the first time in protein–RNA
hotspot prediction. IP represents the propensity of an amino acid
to occur at the interface, while hotspots are a kind of special bind-
ing sites, which we think is the possible reason for the helpfulness
of IP to the prediction of hotspots at binding interface. As for topo-
logical features, some studies have proved that the consideration
of the node heterogeneity in network is helpful to the functional
residue identification (Yan et al., 2018).

3.3 Comparison between different machine learning

methods
We needed to select an appropriate machine learning method to
build our model. To this aim, we compared the performances of six
classic classifiers using 10-fold cross-validation on the training data-
set, with the results shown in Supplementary Table S6. Compared
with the classifiers kNN (Cover and Hart, 1967), Adaptive Boosting
(Adaboost; Freund and Schapire, 1997) and eXtreme Gradient
Boosting (XGBoost), GTB, RF and SVM achieve the best perform-
ances in PRE, F1 and MCC scores. In view of this, we adopted the
three classifiers GTB, RF and SVM as the first-layer classifiers of
our SEC, and the LR as the second layer to output the final result,
which can reduce the risk of overfitting to some extent. As a result,
generally SEC far outperforms the other classifiers with ACC, PRE,
F1, MCC and AUC of 0.833, 0.602, 0.646, 0.581 and 0.848, re-
spectively. Thus, the SEC is used as the machine learning classifier
of SREPRHot because of its superior performance.

3.4 Performance comparison of SREPRHot with other

approaches
We carried out the hotspot prediction using our method SREPRHot
on the training and independent testing datasets, respectively, with
the results shown in Supplementary Table S7. To precisely estimate
SREPRHot, we repeated 10-fold cross-validation on the training
dataset 50 times, obtaining ACC, SEN, F1, MCC and AUC values
of 0.818 6 0.016, 0.814 6 0.036, 0.638 6 0.022, 0.565 6 0.023 and
0.859 6 0.019, respectively. The results indicate the performances
of our model are relatively stable and robust.

Additionally, we compared the performance of SREPRHot on
the independent testing dataset with the existing methods PrabHot,
XGBPRH and HotSPRing, and the results shown in Table 3. It
should be pointed out that the former two were developed to predict
the hotspots with a threshold of DDG¼1.0 kcal/mol, and the latter
was proposed to predict the range of DDG for a residue mutation.
Deng et al. (2019), the developer of XGBPRH, in order to compare

the performance of XGBPRH with HotSPRing, adopted a threshold
of 1.0 kcal/mol to define hotspots for the results from HotSPRing.
The results corresponding to HotSPRing in Table 3 are from the lit-
erature (Deng et al., 2019) as HotSPRing is currently unavailable.
From Table 3, generally XGBPRH achieves the best performance
with SEN, MCC and AUC of 0.909, 0.661 and 0.868, respectively.
Considering that our method uses a stricter criterion of
DDG�2.0 kcal/mol, SREPRHot achieves a good performance with
SEN, MCC and AUC reaching 0.900, 0.557 and 0.829, respectively.
The comparison indicates our approach shows a promising perform-
ance, and can be a complement to the methods with the threshold of
1.0 kcal/mol used.

3.5 Case study
As a case study, Figure 2 shows the prediction results by SREPRHot
on two protein–RNA complexes. The first is bacteriophage MS2
coat protein–RNA complex (PDB ID: 1ZDI; Valegârd et al., 1997).
Alanine scanning experiment gives three non-hotspots (K43A, R49A
and S52A) and three hotspots (K57A, K61A and Y85A) with
DDG�2.0 kcal/mol. As shown in Figure 2A, SREPRHot identifies
four non-hotspots (K43A, R49A, S52A and K61A) among which
three are correctly identified. The two identified hotspots (K57A
and Y85A) are all correct predictions. For the second case, which is
the structure of STAR domain of Quaking protein in complex with
target RNA (PDB ID: 4JVH; Teplova et al., 2013), the experiment
gives four non-hotspots (N97A, K120A, R124A and R130A) and
two hotspots (K190A and Q193A). Impressively, SREPRHot cor-
rectly identifies all the non-hotspots and hotspots, as shown in
Figure 2B.

4 Conclusion

The effective prediction of binding hotspots in protein–RNA inter-
actions is essential for understanding their specific recognition and
interaction mechanisms. In this paper, a new method SREPRHot is
proposed for identifying the binding hotspots, which takes the 18
features of predicted protein residues as input and gives their classifi-
cation results as output. In order to deal with the data class imbal-
ance problem caused by adopting a stricter criterion of hotspots
with DDG�2.0 kcal/mol, not 1.0 kcal/mol often used by the existing
methods, SMOTE algorithm is utilized to generate the minority
(positive) class samples to reach a data class balance. Besides con-
ventional sequence and structural features, the two new feature
types, residue IP developed by us and topological features from the
node-weighted AAN, are extracted as candidate features. From
them, our proposed Random Grouping feature selection strategy
combined with a two-step method is utilized to pick out an optimal
feature set. Finally, a stacking ensemble model is adopted, which
combines three well-performing classifiers GTB, RF and SVM via

Table 3. Comparison of SREPRHot with existing methods on inde-

pendent testing dataset

Method SEN SPE PRE F1 MCC AUC

XGBPRH

(1.0 kcal/mol)

0.909 0.733 0.833 0.870 0.661 0.868

PrabHot (1.0 kcal/

mol)

0.793 0.655 0.697 0.742 0.453 0.817

HotSPRing

(1.0 kcal/mol)

0.655 0.552 0.604 0.633 0.258 0.658

SREPRHot

(2.0 kcal/mol)

0.900 0.792 0.474 0.621 0.557 0.829

A B

Fig. 2. Prediction results of SREPRHot on 1ZDI (A) and 4JVH (B). The predited res-

idues are shown in spheres. For 1ZDI, among the six predicted ones, from the left,

the third (K57) and sixth (Y85) are predicted as true positives, the forth (K61) as

false negative and the others (K43, R49 and S52) true negatives (A). For 4JVH,

among the six predicted ones, from the left, the first (K190) and second (Q193) are

predicted as true positives and the others (N97, K120, R124 and R130) as true neg-

atives (B)
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LR to construct the classification method. Compared with the exist-
ing methods, SREPRHot achieves a promising performance. We be-
lieve that our method is a new beginning in predicting binding
hotspots, and in addition the strategies proposed to preprocess the
data and select optimal features can also be used as a reference for
future prediction works.

One thing that needs to be pointed out is that in SREPRHot per-
formance, the protein interfacial residues need to be known. We can
use the currently proposed RNA-binding residue predictors to ob-
tain the information which include aPRBind (Liu et al., 2021a),
DRNApred (Yan and Kurgan, 2017), NucBind (Su et al., 2019) and
NCBRPred (Zhang et al., 2021). In addition, as for features, many
tools including BioSeq-Analysis2.0 (Liu et al., 2019), BioSeq-BLM
(Li et al., 2021) and DescribePROT (Zhao et al., 2021) have been
developed to generate sequence- and structure-based features which
can be tried to construct a powerful predictor for hotspot identifica-
tion in the future.
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